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1. Introduction 

 
The introduction of incentive-based regulation since liberalization has coincided with the 

gradual adoption of cost and efficiency benchmarking as a powerful instrument by many 

European energy regulators (Jamasb et al., 2004). For example, Norway introduced incentive 

regulation and efficiency benchmarking in 1997 while Germany followed suit only in 2009. 

Benchmarking can be broadly defined as comparison of some measure of actual efficiency 

and productivity performance against a reference or benchmark performance (Jamasb and 

Pollitt, 2000). The primary role of benchmarking under incentive regulation is to decouple 

the allowed revenues of a network utility from its own underlying costs by determining the 

regulated revenue cap based on the cost of efficient networks. 

 
Benchmarking aids comparative regulation and makes use of available outside information 

beyond what is revealed by the regulated network company itself. Hence, benchmarking 

serves as a tool for regulators to eliminate or reduce the firm’s asymmetric information 

(moral hazard and adverse selection) advantage on its operational and capital costs (inputs) 

and  demand 1 .  The  use  of  available  outside  information  in  network  regulation  retrieved 

independently of the network companies themselves imply that benchmarking in effect aims 

to mimic the incentive mechanisms of a competitive market in a monopoly environment. This 

resembles  a  yardstick  competition  in  its  extreme  form  where  the  outcomes  of  perfect 

competition are replicated in a regulated natural monopoly context (Shleifer, 1985). 
 
 
However, the European electricity supply industry (ESI) is undergoing fundamental technical 

changes in the drive towards sustainability and ensuring security of electricity supply. These 

changes are also sparkling debate on how incentive regulation and the application of 

benchmarking within incentive regulation should evolve (Cambini et al., 2014). For example, 

it is estimated that the required costs of the transmission grid expansions in Europe will be in 

the region of 104 billion euros (ENTSOE, 2012). Similarly, the investment needs in Europe's 

distribution grid is estimated to be around 520 billion euros by 2035 in the transition towards 

a low-carbon economy (EURELECTRIC, 2012). The large-scale investment requirements 

can alter the cost structure and the use of inputs (operational and capital expenditures) by 

 
 

1 This is a typical information asymmetry problem arising in a principal-agent relationship where the 
regulated agent holds superior information on its own cost and demand structures than the principal 
(or the regulator in our case). See Laffont and Tirole (1993) for more details. 
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network companies. These investments are also 'lumpy' implying increased uncertainty in 

benchmarking analysis. This is because investments concern the future and are of irreversible 

nature while the future is uncertain (Dixit and Pindyck, 1994; Bruneekreft, 2013). 

 
Addressing the concerns of inadequate supply security would also imply that incentive 

regulation is evolving from an input-oriented approach to an output-oriented approach. An 

output-based incentive regulation approach evaluates the monopoly’s performance in terms 

of quantity and quality of delivered outputs such as energy and connections services as well 

as service quality and provides incentives to improve quality (Vogelsang, 2006). However, 

the probable inclusion of additional output measures of performance such as network security 

is unexplored by regulators and scarcely discussed among academics and policymakers. 

 
The  main  aim  of  the  paper  is  to  illustrate  how  output  measures  of  supply  security 

performance such as ‘network security’ can be utilised using benchmarking analysis within 

an incentive regulation framework. We conceptualize ‘network security’ as encompassing the 

conventional elements of supply security such as short-run operational reliability; commercial 

reliability and long-run resource adequacy (see Joskow, 2007) along with the security threats 

arising from natural, accidental and malicious (or exceptional) events facing the electricity 

network (see Nepal and Jamasb, 2013) in the remainder of the paper. The paper defines and 

designs a suitable output metrics of network security to be incorporated in an output-oriented 

incentive regulation framework. The paper also aims to stimulate policy discussion on the 

conceptual and technical aspects of incorporating network security in incentive regulation 

framework using a benchmarking analysis. 

 
The remainder of the paper is organised as follows. Section 2 discusses the literature on the 

theoretical and empirical linkages between incentive regulation and network security by 

focussing on the regulation of quality of service in the European context. Quality of service is 

an integral but not a complete component of network security (Nepal and Jamasb, 2013). 

Section 3 focuses on general approaches to benchmarking analysis of network security with 

different benchmarking options such as network security costs, network security cost drivers, 

data (or sample) size and quality and the mathematical techniques. Section 4 proposes an 

output metrics for network security critically reflects on the findings from the previous 

sections and offers policy recommendations. Section 5 concludes the paper. 



EPRG 1413 

4 

 

 

 
 
2. Relevant Literature and Studies 

 
 
Electricity networks exhibit natural monopoly characteristics such as economies of scale, 

economies of scope and economies of densities due to high sunk costs and low marginal 

network operating costs (Kahn, 1971). In the absence of regulatory interventions, electricity 

network companies face low incentives for internal efficiency and greater incentives for rent 

seeking  leading  to  distortions  in  allocative  efficiency.  Hence,  incentive-based  regulation 

(such as price cap/revenue cap regimes) of network entry, access and charges has been 

implemented  in  many  European  countries  since  electricity  sector  liberalisation 2 .  Utility 
 

benchmarking under incentive regulation aims to promote economic efficiency (cost 

efficiency, allocative efficiency and dynamic efficiency) by reducing the regulated firm’s 

information advantage on its inputs and demand. It can thus be viewed as a second best 

solution to achieve competitive market outcomes (Newbery, 2002; Joskow, 2013). 

 
Benchmarking can be a useful tool in assessing the efficiency and the performance of the 

regulated company in meeting the productivity objectives defined by the regulator ex-ante 

(Ajodhia et al., 2004). The results from statistical benchmarking methods help to determine 

the relative efficiency of individual company’s operating costs and service quality relative to 

their peers. This information can then be used as input to setting values for setting the initial 

price 'Po 
' and the 'X' factors reflecting the cost reduction path of a given regulatory period in 

incentive-based  regulation  (Jamasb  et  al.,  2004;  Joskow,  2008).  A  robust  benchmarking 

model can aid the regulator in determining the relative efficiency of different network 

companies and set their reasonable targets in term of cost efficiency (Coelli et al., 2008). 

Hence, benchmarking of electricity network companies can play a key role in sharing the 

benefits of efficiency improvements with consumers and ensuring that regulated network 

companies earn a fair return on their investments (Haney and Pollitt, 2013). 
 
 
From a theory point of view, the optimum level of network security (and service quality) is 

attained when a profit maximising regulated company increases network security to the point 

where marginal benefit of additional network security to consumers equals the companies’ 

marginal cost of increasing security (see Sappington, 2005). Figure 1 presents a graphical 

representation of the optimum level of network security considering that the reliability level 

reflects the consumers' priorities. However, regulation of network security or other aspects of 
 
 

2 Electricity networks were nationalised (i.e. publicly-owned) and managed by the ministry prior to 
liberalisation in Europe. 
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security of electricity supply such as service quality regulation suffers from three major 

problems (Spence, 1975; Fraser, 1994): a) problem of measuring service quality, b) the lack 

of  information  on  the  actual  consumer  demand  for  service  quality,  and  c)  the  lack  of 

information on the efficient costs required to produce optimal service quality. 
 
 
 
 
 

Total Costs  
Total 

 
 
 
 

Investment Costs 
 
 

Interruption Costs(IC) 
 
 
 
 

O&M Costs 
 

 
 
 

Optimum Reliability 
Level 

 
 

Figure 1: Socio-economic optimization of network security 
 
 
 
 
In many European countries, service quality is treated separately under quality incentive 

schemes and involves a rewards and penalty scheme (RPS) (CEER, 2012; Fumagalli, 2012). 

For example, in 2000, Italy introduced RPS followed by Norway and Great Britain in 2001 

and 2002 respectively while France only introduced RPS in 2009. Under the RPS, the 

regulated tariff (or the allowed revenue) of the network company is increased (rewarded) or 

decreased (penalised) in proportion to the distance between actual performance and target 

performance set by the regulator ex-ante and an incentive rate defined as a monetary value 

per unit change in service quality. The RPS incentive structure is in line with the theory of 

optimal incentive scheme when quality is verifiable (Laffont and Tirole, 1989). The RPS 

scheme also places much importance on precisely identifying the underlying production 

technology of the network company to promote efficient delivery of service and quality 

(Coelli et al., 2013). 
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An alternative approach is to include network security aspects such as service quality into the 

efficiency benchmarking. This approach would imply that the efficiency requirement also 

includes  incentives  for  service  quality  (and  hence  network  security)  improvements. 

Moreover, the cost efficiency or cost saving objectives of incentive regulation can adversely 

affect service quality (and hence network security) if the regulated prices are not allowed to 

increase as the network company incurs greater costs to improve the service quality 

(Sappington, 2005). For example, empirical studies such as Ter-Martirosyan (2003) and Ter- 

Martirosyan and Kwoka (2010) have showed that, in the absence of appropriate quality 

controls  within  incentive  regulation,  incentive  regulation  lead  to  deteriorating  levels  of 

service quality in the US electricity networks. 

 
Only few empirical studies based on panel and cross-sectional data analysis have explicitly 

included service quality in benchmarking analysis in the European context while examining 

the effects of incentive regulation on the level of service quality delivered. Giannakis et al. 

(2005)  used  data  envelopment  analysis  (DEA)  frontier  method  to  measure  technical 

efficiency (TE) based on non-parametric input distance functions and total factor productivity 

(TFP) growth among the UK’s 14 distribution companies for the period 1991/92 to 1998/99. 

The results showed that cost-efficient firms did not necessarily exhibit high service quality 

although it’s desirable to integrate quality of service in a benchmarking analysis. Similarly,, 

Yu et al. (2009) presented an empirical approach to measure and incorporate service quality 

into benchmarking analysis in the UK  electricity distribution networks  from 1990/91 to 

2003/04 using the DEA technique extending the earlier research by Giannakis et al. (2005). 

The results showed that from a performance point of view, cost and quality are not separable 

and that there is potential trade-offs between costs and quality of service. 

 
 
Coelli  et  al.  (2008)  estimated  a  benchmarking  model  incorporating  a  service  quality 

parameter for EDF’s 92 French electricity distribution units for the period 2003-2005. Using 

both the SFA and DEA techniques in estimating the input distance functions the results 

showed that inclusion of service quality variables had no significant effect on the mean TE 

scores implying that including a quality indicator in efficiency benchmarking has no 

substantial effect. Growitsch et al. (2009) undertook efficiency analysis of distribution 

networks from seven European countries applying the stochastic frontier analysis (SFA) 

method  to  multi-output  translog  input  distance  function  models.  The  results  showed 
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significant potential trade-offs between quality and efficiency scores especially for smaller 

network companies. 

 
 
Some recent studies have examined the impact of service quality regulation on performance 

of network companies in terms of cost efficiency and quality provision using benchmarking 

analysis. Growitsch et al. (2010) explored the impact of incorporating customers' willingness- 

to-pay for service quality in benchmarking models on cost efficiency of distribution networks 

in Norway using the DEA technique. The results showed that the introduction of service 

quality regulation had no conflict and impact on firms’ performance and cost efficiency. 

Norway is a notable exception in integrating the cost of quality (in the form of the value of 

energy not delivered) in the efficiency benchmarking exercise. In the UK electricity 

distribution, Jamasb et al. (2012), by specifying a new empirical model, showed that 

regulatory incentives to reduce service interruptions have not been sufficiently strong to 

achieve economically efficient levels of service quality. However, the economic incentives to 

encourage utilities to reduce network energy losses have led to performance improvements in 

this area. 

 
 
Cambini et al. (2014) investigate the response of the largest Italian electricity distribution 

company to the input-based and output-base incentives using a comprehensive and balanced 

panel for 115 companies spanning from 2004 to 2009. A two-stage, semi-parametric DEA 

and bootstrapping techniques is applied for this purpose. The main finding of their analysis is 

that the presence of quality regulation did not significantly alter the behavior of the firms’ 

implying that cost efficiency incentives did not conflict (or trade-off) with quality-related 

incentives. 

 
The empirical evidences suggest that the incorporation of network security in efficiency 

benchmarking analysis is rather a relatively new concept and remains unexplored both in 

academic literature and regulatory practices. A first step towards including network security 

under benchmarking analysis would be to establish a conceptual benchmarking framework 

for network security, which is currently absent in the existing benchmarking studies of the 

regulated network companies. This presents a major knowledge gap which our study aims to 

bridge to some extent. 
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3. Methodology 
 
 

The  incorporation   of   network   security  in   benchmarking   analysis   typically  involves 

identifying the network security related 'inputs' (such as capital and operating expenditures of 

network security) and a range of network security related 'outputs' (such as quality of service, 

e.g., duration and frequency of interruptions). A network company will then be regarded as 

being more efficient, in delivering network security in our case, if it is able to deliver more 

network security related outputs while using less input factors. 

 
Table 1 presents several considerations that arise in connection with integrating network 

security in a benchmarking framework. A benchmarking framework for network security has 

to consider four major dimensions: a) network security related costs; b) network security 

related cost drivers, c) data sample, and d) benchmarking technique. The benchmarking 

framework should allow for identifying and describing the conceptual aspects involved in 

benchmarking  along  with  the  categorisation  of  different  benchmarking  techniques  as 

discussed below. 
 
 
 
 
 

Network security related costs Network security related costs drivers 

• Top down versus bottom up approach 
  If Top down: Totex on network security 

versus (Opex + Return + Depreciation) 
  Separate OPEX and CAPEX for network 

security 
  By type of network security activities 

• High level versus detailed 

• Inclusion of metrics (or outputs) 

• Exogenous variables 

Data sample Techniques 

•  Cross section versus panel 

•  Historic data versus future plans 

•  International sample versus domestic sample 

• Partial Performance Indicators (PPI) 

• TFP and other index based productivity 
approaches 

• Norm and reference models 
• Econometric methods (OLS 

/COLS/MOLS) 
• Frontier methods 

 DEA 
 SFA 

Table 1: Several considerations involved in benchmarking network security 
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3.1 Network security related costs 

 
 
Network  utilities  incur  both  operational  expenditures  (Opex)  and  capital  expenditures 

(Capex) related to network security. Opex generally includes operating and maintenance 

costs (both variable and fixed) that the network company incurs during a fiscal year. Capex 

expenditures generate long-term future benefits and are incurred when a network company 

invests in new fixed assets to replace the existing old assets or to expand the network. There 

are several ways in which these costs can be structured, aggregated and treated in a 

benchmarking exercise under an input-based incentive regulation. 

 
The bottom up approach involves treating different types of costs (i.e. opex and capex) to 

different benchmarking analysis. The opex can be an aggregate measure or could be split 

according to the type of network security related activity (such as wages and salaries, repair 

costs etc.). Each cost type enters a separate benchmarking model with different cost drivers. 

However, such activity-specific treatment of network security opex in benchmarking gives 

rise to implementation issues such as data-quality and data comparability. Effective opex 

benchmarking requires harmonised rules for cost classifications and allocation that are 

consistently applied across the network companies. On the other hand, capex benchmarking 

can pose difficulties due to significant heterogeneity between network companies in terms of 

the age of assets, geography, lumpiness of investments and other considerations (Joskow, 

2008). The differences in the costs nature imply that benchmarking approach to opex may not 

be suitable for capex. 

 
The bottom up approach to network security benchmarking may be suitable if the regulation 

framework of the network is based on the 'building-blocks' approach where the constituent 

components of total costs such as opex and capex are subject to scrutiny. However, the 

building block approach suffers from the 'double jeopardy' problem characterised by the 

allocative and accounting trade-offs between capex and opex (Ajodhia et al., 2006). A partial 

cost benchmarking under the bottom-up approach can lead to an overall estimate of costs, 

which can be infeasible, and unreasonable basis for setting targets as the regulator combines 

the most efficient (or the lowest) costs for each subset from different network companies 

(Shuttleworth, 2005). 

 
The top down approach will use a comparison of total network security costs among network 

companies. The approach can involve controlling for the effects of contextual factors such as 

economies  of  scale,  scope  and  densities,  and  network  topography.  Benchmarking  total 

http://en.wikipedia.org/wiki/Fixed_assets
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expenditures (totex) creates a more equal treatment of capital and operational expenditures in 

efficiency analysis and is an alternative approach to overcoming the problems associated with 

accounting treatment of capital expenditures. Moreover, an effective totex benchmarking 

requires  long  datasets  to  minimise  the  aggregation  problem  as  the  transmission  and 

distribution companies tend to invest on network security assets with long service life. This is 

important, as network security totex can constitute lumpy, indivisible, volatile and cyclical 

investments, which lead to wide short term fluctuations in the annual value for totex. 

 
An alternative approach to totex benchmarking is the total cost benchmarking. Total cost 

includes the sum of opex plus depreciation of capital and an allowed return on capital. Hence, 

total cost benchmarking, to some extent, addresses the challenges associated with capex 

benchmarking when investments are characterised by lumpiness and annual variability. For 

example, the total cost approach to benchmarking has been adopted by the Dutch and the 

Norwegian regulators in their regulation of electricity transmission and distribution networks 

(Ajodhia et al., 2006). A total cost benchmarking creates incentives to improve security 

performance in both the short and long run. However, determining a suitable basis for 

depreciation of asset values (accounting, regulatory or economic) such as book values versus 

replacement costs and calculating the return on capital can be problematic (Diewert, 2005). 

Overall, costs benchmarking requires standardised definitions and classifications of Opex and 

Capex considering the differences in accounting classifications of costs across countries 

(Cohen, 2005). 

 
From a social-welfare perspective, a regulator can also consider to incorporate the costs of 

inadequate network security in the total costs estimates and undertake benchmarking analysis 

based on a measure of the social costs of network security. The Finish and Norwegian 

regulators have included estimated socio-economic cost of outages (i.e., the value of energy 

not served due to outages) as part of the total cost for efficiency benchmarking (Kuosmanen, 

2012). Outage costs are also used as an instrument to evaluate the social cost of service 

including service quality. However, there is no consistency in estimating outage costs among 

the EU regulators. Assessing the costs of inadequate network security failure can be 

contentious and the informational requirement is high considering the multi-faceted and 

infrequent nature of the problem and limitations on data availability and quality. 
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3.2. Network security related cost drivers 

 
 
In economic and benchmarking modelling terms cost drivers are explanatory factors that 

drive the costs of network companies. Hence, it is desirable the incentive regulation and 

benchmarking model can also reflect the network security. The incorporation of network 

security variables directly within a benchmarking model as 'outputs' can provide incentives to 

deliver these outputs at different cost levels. This is especially relevant as, in countries such 

as the UK and Italy, where incentive regulation is changing from an input-based to an output 

based approach and given the regulatory concerns on investment inadequacy, innovation and 

sustainability (Cambini et al., 2013). An output-oriented approach combines the efficiency 

mechanisms in a revenue cap framework with output-based incentives including those 

concerning network security. 

 
The primary cost drivers in network benchmarking can include demand and supply side 

variables such as the number of connections (a proxy to reflect fixed costs), load served (a 

proxy for network capacity), volume of energy delivered (a proxy to reflect the cost of 

energy), network security variables, network energy losses and network length. The selection 

of cost drivers should ideally be independent of data availability considerations. For example, 

Turvey (2006) criticises the practice of choosing the number of cost drivers to suit the data. 

The use of available data on electricity distributed (MWh) as proxy for maximum demand 

and  on  network  length  per  customer  as  customer  density variable  to  explain  maximum 

demand can be questioned. This is because the relevance of these measures depends on 

networks having similar customer and load factors. On the other hand, the inclusion of 

network length as an output variable can introduce perverse incentives by encouraging 

network expansion solely to improve relative performance (CEPA, 2003). 

 
Coelli (2012) suggests that one possible approach to choosing the relevant cost drivers is to 

explore the implications of an engineering-based reference or norm model of network 

companies. For example, Burns et al. (2005) described a method previously used in Austria 

for selecting cost drivers based primarily on an engineering-based simulation model of a 

hypothetical distribution network. Jamasb and Soderberg (2009) highlighted the Network 

Performance Assessment Model (NPAM) previously used by the energy regulator in Sweden, 

Spain, Peru and Chile. However, network security is unexplored in benchmarking analysis 

implying that the existence of a network security defining output indicator as a cost driver in 

benchmarking analysis is largely unknown. 
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The quality of service indicators that commonly enter the benchmarking models as 

explanatory variables are the continuity of supply indices such as the System Average 

Interruption Duration Index (SAIDI) and the System Average Interruption Frequency Index 

(SAIFI). However, these indicators are generally inadequate for mimicking the interruptions 

impacts arising from exceptional events because exceptional events lead to long unplanned 

interruptions. Hence, an alternative approach would be to construct a new SAIDI indicator 

that only accounts for unplanned interruptions of longer than 5 minutes (Jamasb and Nepal, 

2014). Long unplanned interruption of at least 5 minutes (which are relatively more frequent 

than major exceptional events) can mimic the impacts of interruptions engendered by 

exceptional events. Also, while there is limited data on exceptional events, more data is 

available on long unplanned interruptions. Furthermore, it might be advisable to use an 

average  measure  over  several  years  instead  of  annual  values  as  exceptional  events  less 

frequent than short and planned interrutopns. This would increase the stability of the network 

security indicator. 

 
For the transmission system reliability, other output indicators such as 'unsupplied energy' or 

average interruption time (AIT) can be used. For example, Ofgem has developed incentive 

mechanisms  for  different  aspects  of  distribution  network  service  quality  in  2004.  For 

example, a new incentive mechanism was introduced in 2005 that focused on transmission 

system reliability as measured by the value of energy not supplied (Ofgem, 2004). However, 

consistent  cross-sectional  and  time-series  data  measuring  different  aspects  of  network 

security such as interruption statistics are generally not available, as network companies do 

not systematically report them. Improving data quality is possible when regulators are 

resourceful and invest the required time and effort. 

 
 
 
 
3.3 Data samples 

 
 
Data availability and quality are important factors for performing benchmarking analysis for 

regulation of network security. Accessing larger datasets and improving data quality also 

increases the robustness of the benchmarking results (Lowry et al., 2005). Panel data is 

generally preferable to using cross-sectional data in benchmarking analysis, as the results 

obtained  from  cross-sectional  data  do  not  reflect  the  longer-term   network  security 

performance of the network. The benchmarking results from cross-sectional data may be be 

influenced by exceptional company-specific events such as one-off major network security 
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related capital expenditure. Such results can be misleading in capturing the network security 

efficiency of network companies over time. Burns and Weyman-Jones (1996) found that 

panel data could address certain shortcomings of cross-sectional data, as some variables that 

are particularly important for cross-sectional comparison may not be required for a panel-data 

analysis. 

 
However, the use of panel data in network security benchmarking poses certain problems. 

The availability of appropriate price deflators is a concern as the economic value for some 

network security inputs needs to be deflated to derive the equivalent constant cost measures. 

Also, panel data may be inconsistent over time due to changes in definitions, accounting 

standards, or data providers. These can limit data comparability over time and across the 

network companies. Furthermore, using benchmarks based on historic costs to determine 

future revenue allowances can be less reliable than has been in the past, when the European 

electricity industry was in more of a steady state (Frontier Economics, 2010). This is 

especially relevant for network security as the additional costs involved in network security 

are uncertain in terms of magnitude and timing. For example, network companies can incur 

different costs at different times to achieve the security objectives. Hence, benchmarking 

historic network security costs under increasing uncertainty will not provide reliable and 

informative results. 

 
An alternative to historic cost benchmarking is to undertake the benchmarking based on 

future or forecasted network security costs. Assessment of planned total network security 

costs against explanatory factors and future increases in the outputs of the networks make 

benchmarking  more  oriented  towards  improving  consumer  welfare  (Frontier  Economics, 

2010). The threat of disallowance of security enhancing costs and regulatory risks of network 

security assets stranding as a result of ex-post benchmarking is avoided under this approach. 

Instead, companies are required to meet a set security targets at an efficient price. However, 

future cost benchmarking suffers from the risk of benchmarking inflated costs by the 

companies (Jenkins, 2011). For example, the Information Quality Incentive (IQI) mechanism 

introduced by Ofgem addresses the incentive to inflate future costs even though it is unlikely 

to completely eliminate such incentives in practice among the companies. Hence, in the 

absence of long panel data on outputs, analysis of historic costs in benchmarking can provide 

an additional means of assessment of future expenditure plans. 
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International benchmarking offers another option to increase the sample size and dataset by 

including network companies operating in other countries. This technique of data enrichment 

can be especially useful in the benchmarking of transmission network companies given their 

limited number in a single country. This implies that the scope of benchmarking with the 

country-specific transmission companies is low given their small numbers. For example, the 

UK has only 3 electricity transmission operators and 1 gas transmission operator. Studies by 

Agrell and Bogetoft (2009) and Jamasb and Pollitt (2003) on electricity and Jamasb et al. 

(2008) on gas transmission networks provides an application of international benchmarking 

on efficiency analysis and regulation of the transmission companies. However, international 

benchmarking involves issues such as the availability and consistency of data, exchange rates 

and technical matters for addressing country differences in input price such as labour, cost of 

capital, regulatory issues such as timing of rate reviews and environmental factors (Jamasb 

and Pollitt, 2003; Haney and Pollitt, 2013). The trade-off between increasing the sample size 

and maintaining its homogeneity (or adjusting for heterogeneity) of the sample is another 

issue associated in international benchmarking. 

 
 
 
 
3.4. Benchmarking techniques 

 
 
There are different potential approaches to benchmarking of network security. The choice of 

the appropriate method is crucial in benchmarking as it influences the results. Coelli (2012) 

describes in detail five common benchmarking methods after reviewing the energy regulatory 

practices in 15 OECD countries. These benchmarking methods include Partial Performance 

Indicator (PPI) method, Index-number-based Total Factor Productivity (TFP) analysis, 

Econometric method (EM), Stochastic Frontier Analysis (SFA) and Data Envelopment 

Analysis (DEA). 

 
PPI methods involve the use of trend or ratio analysis on part of the network companies' 

inputs or outputs and make comparisons on the efficiency performance with other network 

companies or an industry average (Stone, 2002). This method calculates a single explanatory 

variable. The indicators produced through PPI are generally easy to compute. The data 

requirements are not high and the results are simple to interpret and therefore require less 

data  while  the  results  obtained  only  suggest  significant  cost  differences  exist  between 

network companies. However, as a partial indicator is not able to simultaneously account for 

multiple inputs. 
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TFP is a ratio of a measure of total output to a measure of total input use that reflects the 

overall productivity change (Turvey, 2006). The TFP method is best used to measure 

productivity performance of a single or a group of network companies over time. There are 

alternative methods for measuring TFP growth including non-parametric approaches such as 

index numbers and DEA, and parametric approaches such as Stochastic Frontier Analysis 

(SFA) and econometric cost-function models. Index-number-based TFP is commonly used 

for measuring productivity growth when there are a limited number of observations available 

(Fisher, 1922; Diewert, 1992). However, the index-number-based TFP method is demanding 

in terms of information requirement as it requires price and quantity information on the inputs 

and  outputs  for  two  or  more  network  companies  over  long  time  periods.  Austria  and 

Germany have used the TFP method to assess the performance of the electricity distribution 

companies in measuring the general productivity trend. 

 
The econometric methods (EMs) involve the use of a cost function, which show the output- 

cost relationship for cost minimising, or profit maximising network companies. A minimum- 

cost function provides the periodic costs incurred by an efficient network company to deliver 

the network services by modelling the technology in place, the output quantities, the input 

prices, and the operating conditions of the company (Coelli et al., 2005). Least-squares-type 

estimations such as ordinary least squares (OLS), corrected ordinary least squares (COLS) or 

modified ordinary least squares (MOLS) are used to estimate the parameters of the cost 

function for comparable companies under this approach (Richmond, 1974). The results are 

then used to derive the expenditures required by individual companies if they are minimising 

costs (i.e. the ‘benchmark cost’) and needs to be compared with their observed costs for 

benchmarking purposes. The difference in the observed cost from the benchmark cost is 

attributable largely to management or controllable inefficiency. Hence, the EMs method do 

not allow for a separate random error term from the inefficiency terms in the modelling while 

it also requires the specification of the correct functional form. UK and Ireland have used the 

econometric methods in electricity distribution in additional and supporting analysis. 

 
SFA is an extended parametric econometric method that can be used in cost benchmarking 

analysis. SFA enables the estimation of a cost frontier, from which actual costs incurred by 

the network companies can be compared. However, it differs from traditional econometric 

approaches in two important ways (Schmidt, 1976). SFA focuses on estimating the cost 

frontier representing the minimum costs rather than estimating the cost function representing 

the ‘average’ network company. SFA also aims to separate the presence of random statistical 
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noise from the estimation of inefficiency by separating the composite residuals into two 

components consisting a random error term and a term capturing ‘other departures from the 

frontier’. The terms capturing ‘other departures from the frontier’ are assumed to be 

management-controllable  inefficiencies.  SFA  has  been  used  in  Germany,  Finland  and 

Sweden. 

 
On the other hand, DEA is a non-parametric technique that can compare the efficiency and 

productivity  of  companies  that  produce  similar  outputs  using  similar  inputs.  Unlike 

parametric techniques, DEA does not require ex-ante assumptions about the shape of the 

underlying production function or cost function (Coelli et al., 2005). Information about the 

shape of the real-world production technology is inferred from observations of the input- 

output combinations used by the businesses. However, being a deterministic method, DEA 

results are sensitive to outlying observations. DEA has been applied by energy regulators in 

Finland, Norway, the Netherlands, Germany and Austria. 

 
Figure 2 shows the data and information requirements for different benchmarking technique 

reflecting differences in the comprehensiveness and accuracy of methods along the spectrum 

of simplicity to complexity. PPI has limited data requirements and is also less complicated 

while TFP is information-intensive, as it requires both price and quantity information on 

inputs and outputs, which makes the technique more, complicated. The other three methods 

(EMs, SFA and DEA) are more effective with larger samples and lie between the two 

extremes of the spectrum. 

 
Table 2 shows the general properties of the different benchmarking techniques. SFA seems to 

be the most complete approach being relatively strong on both theoretical and statistical 

grounds  and  hence  the  most  suitable  candidate  technique  for  benchmarking  of  network 

security costs. 
 
 
 
 

Low Complexity High 
 
 

PPI EM SFA DEA TFP 
 
 

Low Information Intensive High 
 
 

Fig 2: Data requirements and complexity of different benchmarking techniques 



EPRG 1413 

17 

 

 

 
 
 
 
 

Properties \ 
Techniques 

 

PPI 
 

TFP 
 

EM 
 

SFA 
 

DEA 

 

Type 
Non- 

parametric 
Non- 

parametric 

 

Parametric 
 

Parametric 
Non- 

parametric 

 

Presence of random 
error 

 
No 

 
No 

Yes (one 
composite 
error term) 

 
Yes 

 
No 

 

Presence of 
inefficiency 

 
No 

 
No 

Yes (one 
composite 
error term) 

 
Yes 

 
Yes 

 

Presence of optimal 
behaviour 

 
No 

 
Yes 

 

Yes (cost 
function) 

 

Yes (cost 
frontier) 

Yes 
(frontier 
firms) 

Number of inputs Single Multiple Multiple Multiple Multiple 

Number of outputs Single Multiple Multiple Multiple Multiple 

 
 

Data requirements 

 

Cross 
sectional or 
time series 

Cross 
sectional or 
time series 

or panel 

Cross 
sectional or 
time series 

or panel 

 

Cross 
sectional or 

panel 

 

Cross 
sectional or 

panel 

Table 2: General properties of benchmarking techniques 
Source: Adapted from Coelli (2012) 

 
 
 
 
4. Results and Discussions 

 
 
 
The  review  of  different  approaches  to  benchmarking  networks  suggest  that  undertaking 

robust benchmarking of network security can pose challenges to energy regulators. The main 

challenge stems from the confusions surrounding the treatment, accounting and classification 

of different types of security costs, the choice of appropriate variables to include as cost 

drivers and most importantly the lack of comprehensive and quality data related to network 

security. Nonetheless, network security output indicators can be defined and designed 

considering the existing data limitations and incorporate these in an incentive regulation 

framework. Our proposal to incorporate network security in incentive regulation by designing 

a network security output indicator is as follows. 
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A network security metrics can be designed by including long unplanned interruptions of at 

least 5 minutes (which are more frequent than exceptional events). Long unplanned 

interruptions can mimic the impacts of interruptions engendered by exceptional events since 

interruptions from such events are often long and affect many customers. Including long 

unplanned interruptions also increases data availability for benchmarking analysis to derive 

the metrics. Hence, the allowed revenue or price path (Pt ) of the regulated network company 

can be directly linked to the network security indicator in an incentive regulation framework 

where RPI is the retail price index, X is the efficiency gain (or the efficiency factor). Q* is 

the network security adjustment parameter (or the network security output indicator) and 

defined as an output measure of continuity of supply (or service quality) for long unplanned 

interruptions  of  at  least  5  minutes.  The  annual  values  of  Q*  are  calculated  from 

benchmarking, ex-post on the basis of the companies’ performances and can take a negative 

or a positive sign. A positive value of Q* implies that network security has improved more 

than required at the national level and vice versa. 

 
 

Pt = Pt-1 (1+ RPI – X+ Q*) 
 
 
 
However, the adoption of statistical methods to account for exceptional events will require 

harmonisation of network security indicators and data collection procedures. This can be 

problematic in Europe because the understanding and definition of 'exceptional events' varies 

between the EU member countries where some countries adopt a more statistical approach 

while other countries qualitatively define exceptional events in terms of their causes (CEER, 

2012). Not all EU countries publicly share the interruption statistics arising from exceptional 

events in their interruption database such as Germany, Denmark and the UK. From a 

benchmarking perspective, it is desirable that the interruptions statistics from exceptional 

events are recorded and publicly shared among the member countries. These factors also 

complicate undertaking international benchmarking of network security in Europe. 

 
The results from benchmarking, if undertaken, may be inaccurate in the absence of good 

quality adequate data pertaining to network security. The results may be informative and not 

deterministic from a regulatory perspective. Most importantly, undertaking network security 

benchmarking with limited data leads to inaccurate results while the costs of doing it wrong 

are high considering the distortions in large-scale future investments pertaining network 

security.  Hence,  the  need  to  design  alternative  approaches  to  treat  large-scale  network 
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security costs arise within incentive regulation. This is because incentive regulation is a 

paradigm while benchmarking is a tool which incentive regulation may embrace. 

 
Network security costs capitalisation and network security cost-pass through are two input- 

based approaches to treat network security costs within incentive regulation but not subject to 

benchmarking. Capitalisation implies that network security costs are treated as capital 

expenditures (i.e. cost capitalisation) and are included in the regulatory asset base (RAB) and 

depreciated  in  line  with  other  assets.  Network  companies  can  earn  a  rate-of  return  (or 

possibly extra rate of return) on network security related capital expenditures irrespective of 

security and efficiency improvements achieved. 

 
Cost pass through involves treating the costs related to network security such that they are 

passed to final consumers assuming that the regulator accepts network security costs in the 

regulatory asset base (RAB). Hence, the network security costs will be treated as operational 

expenditures (Opex) of the network companies and will be subject to direct pass-through 

under following this approach. However, the regulator should cap or ex ante approve the 

security costs to be capitalised or pass-through to mitigate gold-plating of network security 

costs. 

 
The risks associated with large-scale and irreversible network security investments suggest 

that  these  investments  can  undergo  the  initial  regulatory  scrutiny  and  receive  ex-ante 

approval or denial. For example, the RIIO (Revenue=Incentives+ Innovation + Outputs) 

model to be adopted in the UK requires that budget allowances undergo ex-ante regulatory 

approval. There are two regulatory tests determining the 'usefulness' and 'efficiency' of 

investments (Joskow, 2008; Brunekreeft, 2013). These ex-ante tests allow the regulator to 

detect whether a particular security investment is useful and whether investment is realised at 

efficient cost. 

 
From a welfare economic perspective, the 'usefulness' test can be conducted by using a cost- 

benefit analysis (CBA) as a systematic approach for calculating and comparing the benefits 

and costs of security investments in determining whether investments are justified and 

feasible. It involves comparing the total expected cost of each investment option to network 

security against the total benefits. Hence, an investment is useful if the benefits outweigh the 

costs (i.e. net benefit is positive). A social cost benefit analysis (SCBA) can also be carried 

out although pricing the externalities arising from network security investments becomes a 

critical issue. 
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The CBA framework on network security should account for the high-impact-low-frequency 

nature of exceptional events. By definition, exceptional events are central to the concept of 

network security. Policy conclusions without comprehensively accounting for exceptional 

events in a CBA of network security are incomplete. One possible approach to consider the 

exceptional events such as the network security of CBA is by conducting a probabilistic or 

stochastic CBA (Azar and Lindgren, 2003). This approach assigns probabilities for the 

occurrence of exceptional events to estimate the expected the benefits and costs. However, 

estimating realistic probabilities for exceptional security events and estimating the benefits of 

the correct or required level of investments will be a major challenge and will test the 

suitability of SCBA to its limit. 

 
An alternative approach to assessing the usefulness and efficiency of network security 

investments would be to undertake cost-effectiveness analysis (CEA) of the required 

investments.  A  CEA  analysis  of  security  investments  identifies  the  most  economic  or 

efficient way to undertake a given network security investment. CEA provides an ex ante 

evaluation to support decision-making relating to network security and guides the choices to 

be made by decision makers. However, both CBA and CEA analysis of network security 

investments will need to be accompanied with sensitivity analysis in order to validate and 

increase the robustness of results. 

 
 
 
 
5. Conclusions 

 
 
The novelty of the present paper is to discuss and propose the possible incorporation of 

network security in a benchmarking analysis within an incentive regulation framework. The 

need for large investments to meet the European energy policy goals of sustainability, 

economic efficiency and security of supply places emphasis on adapting and developing 

benchmarking as a useful tool for incentive regulation. The paper discusses the different 

considerations when benchmarking network security costs. We underscore the issues and 

options associated with different benchmarking approaches in terms of costs, cost drivers, 

data and techniques pertaining to network security. 

 
We discuss that that network security cost benchmarking requires a clear understanding of 

the cost structure of networks. The need to understand the key security outputs provided by 

benchmarked companies along the network inputs used (and their price) and other associated 
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exogenous variables such as the key environmental factors remains crucial. The effectiveness 

of the use of more sophisticated techniques to network security costs benchmarking tends to 

be greater with the availability of relevant data. The use of panel data techniques to deal with 

unobserved heterogeneity among the networks and the validity of the relevant comparator 

group in security benchmarking will also depend on data availability. 

 
We also highlights the accounting and classification issues of network security costs, choice 

of cost drivers, data adequacy and quality and the choice of benchmarking techniques. 

Assembling and sharing of international datasets can mitigate data availability if compatible 

international data are available together with a proper understanding of the practical issues 

involved when using international data to benchmark domestic network companies. 

 
The future use of network security costs benchmarking can be initially helpful as an 

informative tool rather than being a deterministic tool in the incentive regulation of network 

security. However, network security costs can also be dealt outside of a benchmarking but 

within an incentive regulation framework through costs capitalisation and costs-pass through. 

Stochastic CBA and CEA can be helpful to the regulator in assessing the usefulness and 

efficiency of network security investments. These approaches complement each other and 

provide  valuable  information  to  the  regulator  with  regards  to  the  treatment  of  network 

security costs in an incentive-based regulatory framework. 
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